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ABSTRACT

This report contains a qualitative discussion of sequential decoding

directed toward the non-specialist in information theory. Both the Wozencraft

and Fano algorithms are included. The description of sequential decoding is

preceded by a summary of the general problem. of probabilistic coding and

de coding.



Introduction

In 1948 C. E. Shannon stated his so-called coding theorem,that one can

communicate at rates arbitrarily close to a maximum called the channel

capacity with arbitrarily low error probabilities provided one uses suitably

complex signals with which to modulate the channel. Finding the suitably

complex signals or codes which are also realizable in practical equipment has

been a formidable problem. The particular coding scheme which seems most

promising in making Shannon's theorem practical was developed by J. M.

Wozencraft { I ) in 1958 and is called sequential decoding. A machine (SECO {(2 )

realizing these principles was constructed at Lincoln Laboratory and when

used on a telephone line ( 3 ) resulted in a 44old increase in the data rate over

conventional techniques with a negligibly small error probability. A variation

of the original scheme was developed by R. M. Fano( 4 ) and first results( 5 )

obtained in simulating this scheme are promising.

In this report we discuss the general principles of sequential decoding

at a level which it is hoped will be understandable to the non-specialist in

information theory. Both the Wozencraft and Fano schemes are discussed

and an effort is made to point out their basic similarities and their differences.

The description of sequential decoding is preceded by a qualitative

discussion of the general coding problem.

Discrete Communications Channels

The term channel is a very overworked one. We speak of the gaussian

channel, telephone channel, H-F channel, satellite channel, binary symmetric

channel, etc. Some of these words are descriptive of transmission media,

some are descriptive of noise perturbations. We shall begin with a definition

of a channel in the information theoretic sense and use the word only in this

context throughout this note.

A channel is described by first determining a set of signals or waveforms

which the transmitter is allowed to use. We can label each of the waveforms

with a symbol, say ai , and we call the set of these symbols or waveforms the

inputalphabet. These waveforms are transmitted to a receiver through a

communications medium which, in general, distorts the signals. The receiver,

in turn, operates on the received signal and thereby generates a set of output

symbols bj called the output alphabet. A channel is completely specified if
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the distortion introduced in the transmission can be completely described, in
the sense that if symbol a i is transmitted, we know the probability of receiving

each of the b.'s. Thus a channel can be represented by the block diagram of3
Fig. I where we show an input alphabet A, an output alphabet B, and a set

of arrows from each a i to each bj, each arrow labelled by the conditional

probability p(bj I ai). Thus the channel includes the transmitter and receiver

as well as the transmission medium.

The above definition of a channel is strictly true only for a so-called

memoryless channel, i. e. , a channel in which it is meaningful to speak of

p(bj I a i ) without reference to previously transmitted symbols. In this note we

shall consider only memoryless channels.

The binary-symmetric channel, shown in Fig. 2, is a simple example

of a channel. Here, the transmitter can send one of two signals, a 0 and

a and the receiver gives one of two answers b 0 and b . The channel

transition probabilities are symmetric as shown in the figure. Since both
alphabets contain the same number of signals, there is no loss of generality

in labelling a 0 and b 0 by the symbol 0 and a I and b1 by the symbol 1,
and this is usually done. It will be noticed that this description of the binary-

symmetric channel says nothing specific about the physical transmission

medium used.

One method of building an approximation to a binary symmetric channel

is shown in Fig. 3. The transmitted signals a 0 and a I are pulses of one or

the other of two carrier frequencies in the H-F region. If fading due to iono-

spheric effects is neglected the received signal differs from the transmitted

signal in that random noise is added at the front end of the receiver. The

latter contains two filters each tuned to one of the two transmitted frequencies.

Let v 0 and v1 represent the output voltages of the two filters. The receiver

output is defined to be symbol b 0 if v 0 > vl, and b I if v1 > v 0 . Since

p(boI a) = p(b1 I a0 ) = p the channel is binary-symmetric. A real H-F

system of this kind will at best be only approximately binary-symmetric since

the ionospheric behavior will cause departures of the operating system from

the ideal.

In Fig. 4 we add a variation to the channel of Fig. 3. We include a

third symbol b2 in the output alphabet. In this channel b0 is obtained if

v0 - v I > T; b I , if v1 - v 0 > T; and b 2 , if Ivo - v, I : T, where T

is some positive threshold voltage. Thus this channel can be described by
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Fig. 4. An approximation to the binary erasure channel.

GAUSSIAN
NOISE

X OR Y

T+

Fig. 5. A Gaussian channel.

DATA R BITS/SEC
SOURCE (ly

Xz - SELECTOR Xi

P(X2 k1Y)

Fig. 6. Coding for the continuous channel.
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p(boa) - p(ba.) = p,

p(b 2 a,) p(b 2 fa 0 ) = pI

p(b 0 Ia 0 ) p(bl(a 1 ) = 1 - P, - P2

If p1 = 0, then the channel is the so-called binary-erasure channel, which,

though at most an approximation to some real channels, has some convenient

mathematical properties.

Continuous Channels

The previous section considered so-called discrete channels; i. e.

channels where the input and output alphabets are of finite size. Consider the

channel shown in Fig. 5. Here the input alphabet is the set of all time functions

in the interval 0 < t < T with average power <S. The channel perturbation

takes the form of white gaussian noise with power density N0 watts per cycle.

The received signal is obtained by adding to the transmitted signal an output

sample of the noise generator. This is the so-called white gaussian channel.

If the signals and noise are restricted to a bandwidth W, then the channel is

the band-limited gaussian channel. Clearly a gaussian channel can be converted

into a binary-symmetric channel by selecting two particular time functions for

the input alphabet and by defining the output alphabet as in Fig. 3.

The channel of Fig. 5 is an example of a continuous channel. It is useful

for our purposes not because it is practical in its own right but beciuse it is a

limiting case against which we can compare the more practical discrete channels.

It is in terms of this continuous channel that we shall introduce the coding

theorem of Shannon.

We code for this continuous channel by selecting 2k = 2R T input

waveforms of length T and labelling these waveforms X 1 , X ... X2 k. If

symbol X. is transmitted, the received waveform is Y = X. + n, where n3 .1
is a noise waveform. The receiver thereupon decodes by computing the numbers

P(X 1 I Y), P(X 2 1 Y) ...... P(X2 k I Y). That is, given that Y was received

the receiver computes the probability that each of the various input symbols

was transmitted, based upon its knowledge of the channel The receiver or

decoder output is defined in terms of these probabilities: the receiver output

is the symbol Yi if P(X i I Y) is the largest probability. In other words, the
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receiver computes that symbol which was most probably transmitted based

upon the evidence furnished by the received waveform Y. If symbol X. was3
transmitted and symbol Y. is received where i € j, then the receiver makes

1

an error.

The system we have been describing is shown in Fig. 6. In it, a data

source emits R bits per second. These data bits are shifted serially into a

k = RT cell shift register. The shift register is filled in T seconds. Each

of the 2k values of the register is associated with one of the 2 k input symbols

X. of the code. Hence every T seconds one of the waveforms X. is trans-3 3
mitted and one of the symbols Yi is received. Let P e(T) be the probability

of error, that is, the probability that the receiver makes an incorrect decision.

Now suppose we repeat the above process by selecting a different set

of 2 k waveforms of length T as the code. We obtain in this way another

probability of error. Suppose that we make all possible selections of 2 k

waveforms and compute the probability of error for each code.

Let us hold R fixed and repeat this process for a larger value of T

or equivalently a larger value of k = RT. Shannon's coding theorem states

that there exist codes (selections of waveforms) for which P e(T) tends to 0

as T becomes large, provided that the rate R is less then some maximum

value, called the channel capacity C. If R > C then there is no way of

making Pe(T) tend to 0 for large T. This behavior of the error probability

can be stated more strongly: there exist codes of length T seconds where the

probability of error P behaves according to
e

P - 2-TEl ( R ) ,R < C
e

where the exponent E 1 (R) is a functiori having the general behavior shown in

Fig. 7. Here EI(R) is plotted against the rate R. It has some positive value

at R = 0 and decreases to 0 when R = C, the channel capacity. Since the

probability of error depends upon the product E IT, there is a choice as to

how to obtain a given P e If one chooses to operate at very low rates with

respect to channel capacity, then EI is large and T is correspondingly small.

For operation at rates which are a large fraction of capacity, E 1 is small and

the necessary T becomes correspondingly large. Thus one can obtain an

arbitrarily small P for a given R < C, provided one is willing to make T
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large enough. But this implies generating 2 RT waveforms at the transmitter

and computing the largest of 2 RT numbers at the receiver. In general 2 RT

is too large for practical exploitation of the continuous channel.

Channels with Discrete Input and Continuous Output

The first step in making practical use of the coding theorem is to limit

the size of the channel input alphabet to some reasonable number, say

m = 24, where t, is generally less than 5 or 6. In the simplest case

= I and we have a binary input alphabet. Suppose these binary symbols

are each r seconds long. Then in time T we can transmit n = T/. binary

channel symbols or a total of 2n different sequences of channel symbols in

time T. To code for the channel we select 2k = 2R T of these 2n sequences.
Such a code is often called an (n, k) block code. This is to be contrasted with

the selection of 2k of the infinite number of different waveforms of length T

in the continuous channel.

More generally, if the input alphabet size is 2- and each waveform is

of length r, then there are 2 tn possible sequences of length n = T/,.

Obviously, k < tn or k/tn < 1. The fraction k/tn, the ratio of the number

of information bits per block to the number of equivalent binary symbols per

block, is often called the rate r in bits per transmitted binary symbol.

When the input alphabet of the channel is restricted in this way the

picture of the transmitting terminal presented in Fig. 6 for the continuous

channel changes. In the continuous case the channel alphabet consisted of 2k

waveforms one of which was selected for each set of k bits received from the

source. For the finite input alphabet (binary case) we have the picture shown

in Fig. 8. For every set of k bits received from the source, n bits are

generated. Generally one can think of the n bits as being composed of the k

information bits to which are appended n - k parity check digits which are

linear functions of the k information bits. These n digits are taken serially

to select one of the two waveforms forming the channel input alphabet. In the

continuous case the encoder is simply a device for selecting one of 2k wave-

forms. In the discrete input alphabet case, the encoder first performs a

transformation on the k input digits and then makes n waveform selections

in sequence.
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In the continuous channel, (Fig. 6) the receiver computed P(XiIY)

for each of the waveforms X.. In the discrete input case each X. is now a1 1

sequence of n elementary channel waveforms. Under the assumption that

the channel is memoryless. P(Xi Y) can be expressed as the product of the

corresponding probabilities of the symbols making up the sequence, i. e.,
P(XiI Y) is of the form p(x 1 I yl) p(x 2 1y2 ) ... p(xn I y n ), where the trans-

mitted message is the sequence xi, x 2 ... xn and fhe received message is

the sequence yl' Y2' .... Yn" Each of the elementary signals xi has one of

two (in general 2 4) forms. However each of the yi is still obtained by
adding a noise sample to the transmitted waveform. Thus yi is still an

arbitrary waveform of length r.
The receiver (Fig. 9) makes its decision on a block basis. It receives

n waveforms yl' Y2, ... yn. The channel makes a tentative decision on

each received symbol. A decoder which follows the channel makes a final

decision on the block of n channel decisions. More precisely, when the first
symbol yl of the block is received, the channel computes p(a 0 1 y) and

p(a 1 I yl), i.e. , the probabilities that the first transmitted symbol was a 0 and

a 1 respectively. These two probabilities are stored in the decoder. The same

computation is made for each of the n symbols of the block. The decoder, of

course, knows the code, i. e. , which 2k of the 2 n possible sequences were

selected. It computes the probabilities of these sequences by taking the

appropriate products of the symbol probabilities and gives as its final output

the sequence with highest probability. Suppose, for example, that k = 2 and

n = 3 or equivalently that 4 of the 8 possible sequences of 3-digit binary

symbols may be transmitted. Let these 4 sequences be

X = 000

X = 001
X = 010

X 4 = 100

If the received sequence Y = Yl, Y2 1 Y3, then the decoder computes



P(X 1 1Y) = p(ao0 y1 ) p(aoy 2 ) p(ao1Y 3 )

P(X 2 1Y) = p(a 0 y1 ) p(aOly 2 ) p(a 1 Y3 )

p(X 3 IY) = p(aolyl) p(ally 2 ) p(ao 1 Y3 )

P(X 4 IY) = p(alIyl) p(a 0IY2 ) p(a 0IY 3 )

and decodes the sequence with highest probability.

Another way of describing the same computation is in terms of a

so-called "distance" or "metric". Clearly it makes no difference whether the

receiver computes p(XiI Y) or some monotone function of p(XiI Y) say

D(Xi , Y) = -log P(XiI Y). Maximizing p(XiI Y) is equivalent to minimizing

the distance D(Xi, Y) [if P(XiIY) = 1, then D(X i , Y) = 0 ]. Since

p(XiI Y) = p(x 1
1y) P(x 2 1Y2 ).... P(xn1Yn), it follows that

D(XiY) = -log P(XilY) = -log p(xllyl) -log p(x 2
1y2 ), .. -log P(xnlyn)

= d(x I , y1) + d(x,, Y2 ) + .. . + d(x n , Yn).
Thus the "distance" between two sequences X and Y is the sum of the
"distances" between the corresponding symbols making up the sequences.

Probability of Error

What can be said about the behavior of the probability of error for this

channel with discrete input alphabet? The essential difference between this

channel and the continuous channel is the fact that 2k waveforms are selected

out of 2 n possible waveforms of length T rather than out of the set of all

functions of length T. One certainly cannot expect an improvement in

performance by restricting the class of possible waveforms. It turns out that

the general form of Shannon's theorem still holds, that is

P 2 -TEZ(R)
e

where the new exponent E2 is everywhere smaller than the exponent EI of

the continuous case. The more the set of waveforms is restricted, the smaller

the value of the exponent for each value of R. This is shown in Fig. 7.

Output Quantization

In the channel with discrete input the decoder stores 2n probabilities

or "distances" obtained from the channel output and makes 2k computations

involving these 2n numbers. Not only is 2k a frightening number
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of computations for useful values of k , but in addition storage for 2 n

distances or probabilities may also be unattractive. One way of reducing the

storage requirements is by "quantizing" the channel output probabilities. The

channel with which we have been dealing in this section has a binary input

alphabet but an output alphabet consisting of 2 continuously valuable probabilities

or distances. If we use,say,10 bits to specify each probability or distance

(. 116 accuracy) then 20 bits of storage are required to store a single channel

output. If this represents too much storage for the decoder, then the distances
may be stored with fewer bits and therefore with less precision. The binary

symmetric channel represents an extreme case. Here we retain just one bit

at the output which tells whether p(a 0 1 y) is greater or smaller than p(al!y).

If p(a 0 1y) < p(a 1 1y) the distance d(a 0 , y) = 0 and d(a l , y) = 1. In this
case of maximum quantization the channel is said to make a "hard decision";

it calls the received symbol a0 or a1 according to which decision is more
probable. The distance defined in this case is the so-called Hamning

distance.

It seems reasonable that the less information the decoder retains on
which to base its final decision, the poorer will be its performance. Again,

even with channel output quantization, Shannon's theorem still takes the same

form

P - 2 -TE3(R)
e

where E 3 (shown in Fig. 7) is smaller than E. , how much smaller depending

upon how much information is discarded by the channel.

Central Problems of Coding Theory

What we have attempted to show to this point is that given a
communications medium and a continuous channel using that medium, it is

possible to use the channel reliably and efficiently (Shannon's theorem for

continuous channels). To obtain the kind of performance that we want,
continuous channels are impractical. We convert the continuous channels to

discrete channels by input quantization (limiting the number of possible input

symbols) and by output quantization (limiting the amount of information retained

by the decoder per symbol). Both forms of quantization simplify the encoding

and decoding equipments at the cost of performance.

One of the central problems in communication theory is finding discrete

channels and codes which are both practical and which do not degrade the
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performance excessively from the continuous channel. By finding channels and

codes we mean finding input and output quantizations and then making "good"

selections of sequences of channel symbols so that the resulting error exponent

E 3 (R) does not depart excessively from the optimum exponent E1 (R).

The other problem and the one to which we devote the remainder of

this note, is the problem of decoding. Regardless of the channel quantization,

the method of decoding described up until now has required 2 k comparisons

at the decoder leading to the selection of the most probable sequence. As long

as this "maximum likelihood": method of decoding is retained, this number of

computations is fundamental. Another method of decoding has been found by

Wozencraft which yields the same error exponent as maximum likelihood

decoding but far less computation. This technique is called sequential decoding

and its properties are described in the rest of this note.

Sequential or Convolutional Encoding

The essence of sequential decoding is the replacement of the "jumping"

constraint of block coding by a "sliding" constraint. In an (n, k) block code,

a block of k information bits is mapped into a block of n binary symbols by

the generation of n - k parity check symbols which depend upon the k

information bits , (Fig. 8). The next block in sequence depends upon the next

k information bits and thus is completely independent of all previous blocks.

In a sequential code with the same parameters, check symbols are interspersed

between successive information digits with each check symbol dependent upon

the previous k information bits.

We show this in Fig. 10 for k = 4, n = 8, or r = 1/2. On line (a) we

show an infinite stream of information bits m i as emitted by an information

source. On lines (b) and (c) we show the dependencies of the transmitted

symbols by brackets. Line (b) represents a block coding scheme: message

bits m 4 - m 7 are tra.nsmitted together with check digits c4 - c 7 to form

an 8 digit block. The four parity check digits depend only on m 4 - m 7 . The

four check digits c8 - c1 1 in the next block depend only on the message digits

m 8 -m 1 1 of that block. (Clearly, with the dependency specified in this way

it makes no difference whether the check digits are uniformly distributed in

the block, clumped at one end, or arranged in any other way). On line (c) the

sequential configuration is shown. Check digit c 4 is dependent upon mI -m 4 #

c 5 on m 2 - m 5, c6 on m 3 - m 6, etc.

12
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Fig. 10. Convolutional encoding.
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It is convenient to think of the sequential encoding process in terms of

a coding "tree". To see how this comes about we refer to Fig. 10d and begin

by assuming that we have just taken m 4 from the source and generated check

digit c 4 . We have two choices for m 5 , 0 or 1. Once m 5 has been selected,

the check digit c 5 is completely determined by m 5 and the previous message

bits m 2 , m 3 and m 4 . This is represented in Fig. 10d as follows.

Following m 4 , c 4 is a branching corresponding to the two possible choices

for m 5 . The check symbol c 5 follows m 5 on each of the two branches. The

arrival of m 6 causes another branching with the indicated dependence of c 6

on the four message bits m 3 , m 4 , mi 5 and m 6 . This process continues

indefinitely.

Thus the sequential encoding process transforms an infinite sequence

of information bits into an infinitely long tree with each branching

corresponding to the two possible values of each information bit. The check

digits appearing next to the information bit defining a branch are functions of

that information bit and the k-I preceding information bits. Figure 10d shows

a tree for r = 1/2. If r = 1/3 then each message bit is followed by two

check digits on each branch with each check digit a different function of the

same k variables. In all cases, a particular input information sequence is

transformed into a particular path through the tree.

A sequential code of this type is easily generated with a circuit similar

to that of Fig. 10e. Message bits are shifted sequentially through a k = 4

storage cell register from right to left. A parity network connected to the

register generates the check digits. In Fig. 10e, digits m 2 -m 5 are

contained in the register, hence the parity network generates c 5 . The output

sequence is formed by switching alternately to the latest message digit in the

rightmost cell of the register and to the parity output, the switching occurring

at twice the input data rate, (r = 1/2). Since the output sequence is obtained

by shifting a message sequence past a fixed parity network, the encoder is

referred to as a convolutional encoder.

The process is begun by assuming an initial sequence of k-1, 0's

preceding the message sequence. Thus the first check symbol c 1 is

c1(0, 0, 0, m). In terms of the circuit of Fig. 11 this is accomplished by

clearing the shift register before shifting in the first message digit.

All the above remarks and those which follow while stated for binary

codes apply equally well to other alphabets and tree structures.

14



Some Properties of Trees

It is clear from the previous section that once parameters k and n

(or k and r) have been established and the parity generating functions have

been selected, the code tree is completely determined. Having fixed k and

r, the problem of finding "good" codes is the problem of finding "good" parity

networks. The "goodness" of a tree, or of the parity networks generating the

tree, is determined by how "unlike" the paths through the tree are with respect

to a decoding "distance", which as shown above is related to the channel

conditional probabilities.

The tree repeats every k branches. This is seen in Fig. 10d. At m 9 ,

the parity symbol c 9 depends on m 6 , m 7 , m 8 and m It is therefore

independent of the branching at m 5 * Hence, if we compare two infinite

message sequences s and s 2 which are identical except for one bit, say

m 5 , the transmitted sequences (or paths) x1 and x2 corresponding to s 1

and s 2 are identical except for the branches from m 5 through m 8 * If the

two sequences s 1 and s differ in two bits m 5 and m 8 , the branches of

x 1 and x2 do not become identical until m 1 2 . In general if two message

sequences differ in some digit, the corresponding paths do not agree for at

least k - 1 additional branches.

If s 1 and s differ only at m 5 , then the distance between x 1 and
x2 increases until m 9 is reached. Thereupon the distance remains constant.

Sequential Decoding - General Principles

As we have pointed out above, the sequential encoding process differs

from block encoding in one major respect: the jumping constraint of block

encoding is replaced by the sliding constraint of sequential or convolutional

encoding. The result of the sequential encoding process is the transformation

of an infinite information sequence into an infinitely long path through a tree.

The sequential decoding process is therefore the reconstruction of the path

corresponding to the transmitted sequence based upon the information contained

in the received sequence. The criterion by which a sequential decoder selects

the correct path differs from the criterion by which the block decoder selects

the correct sequence in a fundamental way. The block decoder uses the

criterion of maximum likelihood or some variation thereof. Sequential decoding

imposes a threshold based upon an assumption about the noise characteristics.

Thus, whereas block decoding looks for the most probable sequence, sequential
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decoding looks for a sequence which is ''sufficiently probable'' with respect to

some threshold.

It is these two fundamental differences between sequential and block

operation that provide the basis for decoding or tree search algorithms which

drastically reduce the number of decoding operations below the block code

requirements while retaining the same error probability behavior as in the

block code. The undesirable feature that results from these same properties

is the catastrophic nature of decoding errors. That is, once an incorrect

branch is chosen (without the opportunity to change the decision) the probability

of the decoder correcting itself (finding the right path) is low.

Given the fundamental properties of sequential operation, i. e. coding

trees and threshold decoding, how does a decoder operate? The basic

physical law which governs this operation is the probabilistic law of large

numbers which says grossly that the more observations made of a random

process the more reliable are the inferences that can be made about the process.

Every received channel symbol provides a sample of the channel noise. The

longer the sequence of symbols that the decoder observes the more samples

of channel noise are being observed and the more "typical" the noise should

look. A short sequence of symbols may exhibit atypical noise; the longer the

sequence the less probable it is that the noise looks atypical. Suppose that the

decoder is on the correct path. An atypical noise event can make the correct

path look "too improbable" for a short time. The longer the observation of the

correct path the more likely it is to exhibit predicted behavior. On the other

hand, when the decoder takes an incorrect path, in the absence of channel

noise, the longer the observation the less probable the path appears. Again

an atypical noise event can make an incorrect path appear more probable than

the correct path. However, the longer the observed sequence the less probable

atypical noise behavior becomes and the smaller the probability that an

incorrect path looks "sufficiently probable''. It also follows that the greater the

distance that a decoder proceeds along an incorrect path the more computations

will be required to rectify the error. Thus the probability of remaining on an

incorrect path for a given path length decreases with the length and the number

of operations to rectify the error increases with length. It turns out that one

may find tree search schemes in which the average number of computations is

low or equivalently schemes in which the probability of long incorrect paths is

sufficiently small.
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Sequential Decoding Algorithms

As the decoder proceeds to reconstruct a path through a tree based

upon a received sequence, it compares the probability of the path that it is

currently exploring against a threshold determined by the current noise level

that the decoder expects. If the comparison is favorable (the path looks

"sufficiently probable"), the decoder continues forward in the tree. If the

comparison is unfavorable then either the decoder is on the wrong path because

of an atypical noise event that occurred sometime previously or the decoder is

on the correct path and an atypical noise event is now occurring.

At this point the decoder makes the assumption that the path is incorrect.

The decoder reverses itself and searches back in the attempt to find a more

probable path. The distance it is allowed to go back in this search depends

upon the particular algorithm. For the moment assume that the decoder

searches back until it either finds a "sufficiently probable" path or it retreats

some fixed number d nodes back without finding a good path. The former

case implies that the first path was indeed incorrect as hypothesized and that

the new path is more likely correct. The decoder thereupon pro ceeds forward.

The latter case implies that the first path may still be correct and only appears

improbable because of atypical noise behavior. The decoder relaxes its

criterion of "sufficiently probable" and proceeds as before with a new thres-

hold based upon the current assumption of the noise level.

The Wozencraft or SECO Algorithm

The remarks of the previous section are quite general and apply to

any sequential decoding algorithm. We must now become more specific and

pin down some of the parameters that define a decoding algorithm. In this

section we consider the SECO algorithm which is a variation of the original

Wozencraft scheme. In the next section we shall discuss the Fano decoding

algorithm.

Three properties of a decoding algorithm which were left either vague

or unmentioned in the previous section must be specified: first, the definition

of "sufficiently probable" as applied to the decoding threshold; second, the

number of nodes the decoder is allowed to search back in the attempt to find

a good path before relaxing the threshold; and third, the criteria used to make

final or irrevocable decisions about branching nodes, ane the criteria for

releasing the decoded digits to the customer.
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In the SECO algorithm all three of these properties are tied to the

constraint length k. Referring again to the tree of Fig. 10 d, suppose that the

path through m 4 is correct and that the decoder is about to make a decision

on m 5 . We divide the tree into two subsets of equal size stemming from the

two branches at m We call the subset containing the correct path the

correct subset and we call the subset stemming from the incorrect branch at

m 5 the incorrect subset . The basic operation of the SECO procedure is to

distinguish between the two subsets and thereby decode m 5 . To do this we

fix a small fraction, P1 and then define a distance function K,(t) (Fig. 11)

as follows: the probability that any sequence I branches long in the incorrect

subset will be closer to the corresponding subsequence of the received message

than K1 (1) is less than PlV For a larger probability P 2 we obtain a function

KZ (1) which is larger than K1 (1) for all values of 1.

The functions K. (1), 0 < I < k , are then used as the criteria of the

previous section. If a path of length I is found closer to the received sequence

than K 1 (1) , this path is defined to be "sufficiently good" since the probability

that this path is in the incorrect subset is less than P 1 . When a path of length

k is found to be "sufficiently good" then the message bit defining the beginning

of that path is decoded. If a path of length k is not good enough, then the

decoder goes backward and then forward taking alternate branches in a

systematic search for a sequence of length k that meets the criterion. If the

decoder has examined all branches back to that of the digit being decoded and

has been unsuccessful, then the assumption is made that the noise is atypical,

the decoder returns to its old path, relaxes the criterion from K1 to K2 and

begins again. In subsequent decodings the criterion is lowered whenever

possible. The.criteria for releasing the decoded digits to the user are discussed

later.

The Fano Decoding Algorithm

In the SECO algorithm, the final decoding of a digit and the tree search

are intimately related. A digit is decoded whenever a good path k branches

long stemming from that digit is found since that path belongs to the correct

subset with very high probability. Fano's algorithm divorces the decoding

from the tree search. His decoder always attempts to find the most probable

path through the tree. When a digit is decoded it is determined by other

conditions discussed later.
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The criterion functions used in Fano decoding are shown in Fig. 12.

These consist of a number of parallel lines of slope d and with adjacent

intercepts differing by T0 . These curves are, of course, qualitatively

similar to those of Fig. 11. Unlike SECO the abscissa I designating path

length is not limited by the constraint length but extends indefinitely. Plotted

on the same curve is the distance of the current path from the received sequence.

The current threshold is by definition the one immediately above the distance

curve. From the origin to point a the decoder proceeds forward taking the

better branch at each node and the threshold is T1 . At point a the distance

is increasing slowly enough (the noise level is low enough) for the distance to

cross curve T2 ; it continues past point c taking the lower (more probable)

path intil the distance starts increasing rapidly and at point b crosses the

threshold curve. At: this point the; decoder assumes that the path is not

sufficiently probable and it searches back changing decisions at branches in an

attempt to find some path which remains below threshold T. . In this process

it goes back as far as point a and failing to find an exit below curve Tz , it

returns to point b relaxing the criterion to threshold T1 . The original

path again fails, and the search this time yields the upper path at point c

which proceeds below curve T

This procedure attempts to make maximum use of the law of large

numbers, i. e., the fact that the longer the observed path the more probable

the correct path will appear and the less probable all incorrect paths will

appear. The parameters d and T are adjusted to give optimum performance

of the decoder. Unlike the SECO algorithm, constraint length does not appear in

in the tree search procedure nor is the final decoding related to the tree search.

Waiting Lines and Buffer Storage

There is no attempt in this note to derive any quantitative properties of

sequential decoding algorithms. It should be clear, however, because of the

basic structure of the sequential decoding process that if the average noise level

is sufficiently small, then large noise perturbations will be sufficiently rare so

that the decoder is on the correct path most of the time. The greater the noise

level. the more common are the large perturbations and the more likely it is

for the decoder to make false starts on incorrect paths and require searches

to find the correct path. Wozencraft has shown that for rates below some

maximum called R omp , the average number of branches observed by the
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decoder remains finite (For the binary symmetric channel, 1/2 C ! Rcomp : C

where C is the channel capacity.)

However, even with a small average number of computations, there

are individual times during which the peak computational load may become

large. It seems reasonable, therefore, to design a decoding machine which

can handle the average computational load with a buffer storage to smooth out

the computational peaks. Suppose that the decoder contains storage sufficient

for N branches. We can represent this as in Fig. 13 by superimposing a

window N branches long on a decoding tree. The storage represented by the

window is used for a variety of purposes related to the execution of the decoding

algorithm. In Fig. 13a, a number of nodes in the tree have been designated.

Nodes P1 and P 6 are respectively the oldest and newest nodes in the window.

P 5 is the position of the latest branch to enter the decoder from the channel;

P 3 is the current node under examination. P4 is the farthest point to the

right to which P 3 has advanced and P 2 is the farthest point to the left to which

P 3 can go or, in other words, the oldest node which can still be examined.

The distance between P 5 and either P 3 or P 4 is indicative of the waiting

line, while the distance between P 2 and P 1 is some fixed delay between an

irrevocable decision and release of data. The entire window (hence points Pl.

P2 and P 6 ) moves to the right at the rate at which digits are decoded or

passed on to the user. P5 moves to the right at the rate at which digits are

received from the channel.

In Fig. 13b, the SECO configuration is shown. The distance between

P 2 and P 4 is fixed at the constraint length k . The distance between P 3 and

P2 is the length f of the path being examined (the abscissa of Fig. 12). The

waiting line is defined to be the distance between P 5 and P4 A digit is

decoded when the k-branch path between P2 and P4 looks "sufficiently

probable". Thus the entire window moves to the right at the decoding rate
while P5 moves to the right at the uniform channel rate. When P5 reaches

P 6 the buffer overflows and the decoder must stop.

The Fano decoder is represented in Fig. 13c. Here we may consider

P5 and P6 to coincide. Thus the decoding rate and the channel rate are

identical and quite independent of the decoder or tree search operation. P 3

moves at the tree-search rate. Hence the buffer overflows when P3 reaches its

left-most point P.2 The distance between PI and P3 is the length f of

Fig. 4 and the delay d between P1 and P 2 may be interpreted as the

minimum allowable value of i at which a decoding may occur.
21



N BRANCHES DECODING RATE

RATE

~ ~~~~.. GENERAL .. WI C A PI

DECODING RATE

I I CHANNELRATE
* -k -4--- - p3 0 -0- W - .-

p1 P2 ----- k----. P4  P5 P6

b. SECO

CHANNEL RATES

I I p SEARCH IDECOD1 NG RATE
imin x RATE

P P2 P3 P4 P.P
.A -w

c. RANO DECODER

Fig. 13. Decoder storage.



In either algorithm, once P 2 moves past a node, the branch chosen

at that node can no longer be changed. The delay d between P2 and the final
release at P is provided for error detection. If the probability of an

incorrect branching at P2 is not sufficiently low, the delay provides additional
time for detecting a possible error even though that error may no longer be

corrected. In the SECO machine the delay is fixed at k, the constraint

length. This restriction is not fundamental to the Wozencraft algorithm.

Probability of Error

According to the previous section, a digit is releasedwhen the branch

corresponding to that decision leaves the decoder, or equivalently when the

N branch window defining the decoder storage passes the branch. Thus a

decoding error is made if an incorrect branch is passed by the window.

During the process of searching the tree, a noise event often causes

an incorrect branch to look "sufficiently probable". A succession of noise

events can make a succession of incorrect branches or an incorrect path look

" sufficiently probable". As the decoder proceeds along an incorrect path one

of two results must occur: either the decoder remains on an incorrect path

in which case it must eventually look improbable (law of large numbers), or the

decoder somehow stumbles back on the correct path and effectively returns to

normal. The meaning of the latter is best explained with reference to the tree

of Fig. 10. The tree structure repeats every k branches. Thus, for example,

the tree beginning with the branch corresponding to message bit m10 is

independent of the choice of m 6 and earlier message bits since k = 4.

Consequently it is possible for a noise sequence to force an incorrect branching

at m 6 leading to the same branching at m 1 0 that would have been chosen had

the correct branch at m 6 been taken.

There are, therefore, two types of decoding errors: type (1), an

incorrect branching that continues to look probable and results in the decoder

correcting itself and type (2), an incorrect branching which looks correct for

a long enough time so that the error is passed on before it can be corrected.

With these remarks in mind, let us consider decoding errors in the

SECO algorithm with reference to Fig. 13b. Suppose that the path up to node

P is correct and that an incorrect branch is taken at P. This incorrect

branch cannot be corrected (reaches P 2) if the subsequent noise is such that

P3 or P4 advances k branches beyond P and the path looks "sufficiently
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probable. " The two error mechanisms are indistinguishable here since only

k successful branches are required for a decoding.

Once P 2 has passed an incorrect branch at P , the best that can be

achieved is detection of the error. A type 1 error is undetectable; a type 2

error may be detected before being passed by P1 by virtue of the law of

large numbers. One manifestation of this is an increase in the amount of

searching or equivalently a decrease in the average rate at which the window

moves to the right. If this is sufficiently slow P5 will reach P 6 , or the

buffer will overflow, before P is passed by P1 .

Another mechanism for error detection involves placing a confidence

measure on the decoding criteria. In the SECO procedure each criterion curve

K. has associated with it a number P. which is indicative of the probability3 3
of an incorrect branch being passed by P 2. The basic decoding procedure

described above permits the decoder to use successively higher criterion

curves (higher Pj) as the noise level increases, resulting in higher decoding

error probabilities. An obvious detection procedure might then be to

establish a maximum curve. A still more effective procedure is indicated in

Fig. 14. Here we plot the decoding distance (over a constraint length) as a

function of node number. In curve (a) the first (oldest) branch under

consideration is correct; in curve (b) it is incorrect. The important fact is

that it is possible to find a threshold below which the distance remains most

of the time when on the correct path and above which the distance remains most

of the time when on an incorrect path. Use of this threshold is preferable to

fixing a maximum criterion curve since it allows excursions of the distance

beyond the threshold provided these excursions are short enough. It thus allows

the decoder to correct small error bursts that lead to high criterion curves

but which can be subsequently handled by the decoder.

In the Fano decoder, the two types of errors are generally
distinguishable. If the buffer is infinitely large so that the decoder can go back

infinitely far to correct an incorrect decision, then type (2) errors will never

occur since an incorrect path must eventually look improbable. Type (1)errors,

of course, can never be detected. With a finite buffer, type (2) errors canoccur.

Suppose that in Fig. 13c an incorrect branch is taken at point P. The decoder

(point P3) proceeds to the right from P along an incorrect path. If the noise

sequence is such that the P2 passes point P before P 3 returns to P to

correct the incorrect branching, then that error cannot be corrected. If P is

later passed by PI before P 3 retreats to P 2 then that error is passed on
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to the user. Such errors may be detected with very high probability if the

delay period between P1 and P 2 is sufficiently large or by the application
of a distance test similar to that of Fig. 14.
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